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1. Multivariate Lp Bernstein-Markov type polynomial inequalities. This story started
about 170 years ago initiated by a question of Mendeleev and eventually resulted in hundreds of
papers with numerous important applications in Approximation Theory and Analysis in general.

The classical Bernstein and Markov inequalities for univariate algebraic polynomials pn of degree
≤ n give the following sharp upper bounds for their derivatives in the uniform norm:

∥
√
1− x2p′n(x)∥C[−1,1] ≤ n∥pn∥C[−1,1] (1)

and
∥p′n∥C[−1,1] ≤ n2∥pn∥C[−1,1]. (2)

Above inequalities and their numerous generalizations play crucial role in various branches of
analysis and approximation theory, it would be difficult to overstate their importance to the field.
With respect to their widespread application we would like to point out just three major areas
where they are widely used:

A. Inverse Bernstein-Jackson type theorems on the rate of best approximation
B. Marcinkiewicz-Zygmund type results on discretization of norms
C. Study of the rate of Christoffel functions in the theory of orthogonal polynomials
It is considerably harder to establish exact explicit Bernstein-Markov type inequalities similar

to (1) and (2) in case of the L2 norm. In fact even in the univariate case this was accomplished
only for certain weights w.

Now let us turn our attention to the fascinating case of the unit ball Bd := {x ∈ Rd : |x| ≤ 1}.
We established sharp Bernstein-Markov type inequalities for L2(Bd). Given any µ > −1 let us

consider the weight wµ(x) := (1 − |x|2)µ
2 . Then the solution of the L2 Bernstein problem on Bd

consists in finding the quantity

Bd
n(wµ) := sup

p∈P d
n\{0}

∥(1− |x|2)µ+1
2 Dp∥L2(Bd)

∥(1− |x|2)µ
2 p∥L2(Bd)

. (3)

It turns out that the exact values of Bd
n(wµ, 2) can be determined using the classical Jacobi

polynomials Jα,β
m (t).

Theorem 1. Let µ > −1, d ≥ 1, n ∈ N. Then

Bd
n(wµ) =

{√
n(n+ d+ 2µ), if n is even,√
n(n+ d+ 2µ)− d+ 1, if n is odd.

(4)

Moreover, the upper bound (4) is attained if and only if p(x) = cJ
(µ, d

2
−1)

n
2

(2|x|2 − 1), even n, and

p(x) = J
(µ, d

2
)

n−1
2

(2|x|2 − 1)(a1x1 + ...+ adxd), ∀aj ∈ R, odd n.
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Theorem 1 presents a rare occasion when the exact solution of the multivariate L2 Bernstein-
Markov type problem can be found explicitly. When d > 1 we found the solution of the L2 Markov
problem for the homogeneous polynomials Hd

n on the unit sphere Sd−1. As usual, Hd
n stands for

the space of homogeneous polynomials of degree n in d variables.
Theorem 2. Let d ≥ 2, n ∈ N. Then for any hn ∈ Hd

n we have the sharp estimates

ξn∥hn∥L2(Sd−1) ≤ ∥Dhn∥L2(Sd−1) ≤
√

n(2n+ d− 2)∥hn∥L2(Sd−1) (5)

with ξn = n if n is even and ξn =
√
n2 + d− 1 if n is odd.

Moreover, the upper bound is attained if and only if hn is a spherical harmonic polynomial
of order n, while the lower bound is attained if and only if hn(x) = c|x|n,∀c ∈ R or hn(x) =
|x|n−1q(x),∀q ∈ Hd

1 when n is even or odd, respectively.
It is well known that for Lip1 and thus, in particular convex domains the upper bound of order

n2 for Lp, 1 ≤ p ≤ ∞ Markov inequality extends for multivariate polynomials. However, when the
underlying domain is cuspidal the order of magnitude can change drastically. In particular, for
Lipγ, 0 < γ < 1 cuspidal domains in Rd the sharp order in L∞ Markov inequality is known to be

n
2
γ . Typically multivariate Markov-type inequalities in L∞ norm are proved by inscribing suitable

polynomial curves into the domain and reducing the problem to the univariate setting on these
curves. In case of Lp, 1 ≤ p < ∞ norm this reduction of dimension technique does not work and
more delicate considerations are needed.

Let K ⊂ Rd be a compact set with nonempty interior. We denote by

B(a, r) := {x ∈ Rd : |x− a| ≤ r} ⊂ Rd

the closed ball of radius r and center a, and Sd−1 = {x ∈ Rd : |x| = 1} is the unit sphere. For any
r > 0, a ∈ Rd and u ∈ Sd−1 the cylinder La(r, u) of radius r > 0, center a and axis u is given by

La(r, u) := {x ∈ Rd : |x− a|2 ≤ r2 + ⟨x− a, u⟩2}.

Furthermore, lx(u) will denote the line in Rd in direction u ∈ Sd−1 through point x ∈ Rd.
Definition. K is called a graph domain with respect to the cylinder La(r, u) if for every

x ∈ B(a, r) we have that lx(u) ∩ K = [A1(x), A2(x)] with Ai(x), i = 1, 2 being continuous for
x ∈ B(a, r) and |A1(x)− A2(x)| > 0, x ∈ B(a, r).

Moreover, K ⊂ Rd is a piecewise graph domain if it can be covered by finite number of
cylinders so that K is a graph domain with respect to each of them.

If all functions Ai(x) specified above are in Lipγ, 0 < γ ≤ 1 then the piecewise graph domain K
is called Lipγ.

We established the next asymptotically sharp Lp Bernstein-Markov type inequalities for cuspidal
domains.

Theorem 3. Let K ⊂ Rd be a Lipγ, 0 < γ ≤ 1 piecewise graph domain. Then for any
qn ∈ P d

n , 1 ≤ p < ∞ and n ∈ N

∥Dqn∥Lp(K) ≤ c(K, p)n
2
γ ∥qn∥Lp(K).

Moreover, if K if is imbedded in an affine image of the lγ ball having one of its vertices on ∂K
then there exist gn ∈ P d

n , n ∈ N such that

∥Dgn∥Lp(K) > c1(K, p)n
2
γ ∥gn∥Lp(K), n ∈ N.
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By inserting a proper weight function vanishing at the boundary of the domain one can ensure
a smaller Bernstein type upper bound of order n for derivatives of polynomials of degree n. Given
any x ∈ K we denote by

τK(x) := inf
y∈∂K

|x− y|

the Euclidean distance from x to the boundary ∂K of the domain. As shown by the next theorem

the quantity τK(x)
1
γ
− 1

2 provides the proper weight function needed in order to drive a Bernstein
type upper bound for Lipγ, 0 < γ ≤ 1 piecewise graph domains.

Theorem 4. Let 1 ≤ p < ∞. Then given any Lipγ, 0 < γ ≤ 1 piecewise graph domain K ⊂ Rd

we have
∥τK(x)

1
γ
− 1

2Dqn∥Lp(K) ≤ cn∥qn∥Lp(K), qn ∈ P d
n . (6)

Now we turn our attention to some recent results on Lp Markov type inequalities for homogeneous
polynomials on graph domains. Theorem 2 gives a sharp upper bound in the Markov inequality for
homogeneous polynomials Hd

n on L2(Sd−1). It is remarkable that this bound is of order ∼ n even
though for polynomials of total degree n the corresponding order is known to be of magnitude ∼ n2.
This raises the natural question if this improvement in the rate of Markov factor for homogeneous
polynomials holds on other domains, as well?

Theorem 5. Assume that K is Cα, 1 < α ≤ 2 star like domain in Rd with non degenerate outer
normal. Then for any h ∈ Hd

n and every 1 ≤ p < ∞ we have

∥Dh∥Lp(K) ≤ cn
1
α
+ 1

2∥h∥Lp(K). (7)

Moreover, if K is Lip 1 then for every h ∈ Hd
n and any k ∈ N

∥Dh∥Lp(K) ≤ cn
3
2∥h∥Lp(K).

In case when α = 2 that isK is a C2 star like domain with non degenerate outer normal Theorem
5 evidently yields an optimal order n Markov type estimate.

Corollary. For any C2 star like domain K ∈ Rd with non degenerate outer normal and every
h ∈ Hd

n

∥Dh∥Lp(K) ≤ cn∥h∥Lp(K), 1 ≤ p < ∞.

Marcinkiewicz-Zygmund type results on discretization of norms.
Historically the first discretization result was given by S.N. Bernstein in 1932 who showed that

for any trigonometric polynomial tn of degree ≤ n and any 0 = x0 < x1 < ... < xN < 2π = xN+1

with max0≤j≤N(xj+1 − xj) ≤ 2
√
τ

n
, 0 < τ < 2 we have

max
x∈[0,2π]

|tn(x)| ≤ (1 + τ) max
0≤j≤N

|tn(xj)|. (8)

The Lq, 1 < q < ∞ analogue is due to Marcinkiewicz and Zygmund who verified in 1937 that
for any univariate trigonometric polynomial tn of degree at most n and every 1 < q < ∞∫

|tn|q ∼
1

n

2n∑
s=0

∣∣∣∣tn( 2πs

2n+ 1

)∣∣∣∣q (9)

We gave a refinement of the classical Marcinkiewicz-Zygmund result which is similar to Bern-
stein’s estimate (8).
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Theorem 6. For any −π = x0 < x1 < ... < xm = π with max0≤j≤m−1(xj+1 − xj) <
√
τ

qn
, and for

every tn ∈ Tn, 1 ≤ q < ∞ we have

(1− τ)
m−1∑
j=0

xj+1 − xj−1

2
|tn(xj)|q ≤

∫ π

−π

|tn(x)|qdx ≤ (1 + τ)
m−1∑
j=0

xj+1 − xj−1

2
|tn(xj)|q. (10)

This is a Marcinkiewicz-Zygmund type estimate of precision τ similar to Bernstein’s uniform

bound (8). In particular, choosing equidistant nodes xj :=
2π(j−1)
m+1

, 1 ≤ j ≤ m+1 withm =
[
2πqn√

τ

]
+2

we obtain
1− τ

m

m∑
j=1

|tn(xj)|q ≤
1

2π

∫ 2π

0

|tn(x)|qdx ≤ 1 + τ

m

m∑
j=1

|tn(xj)|q.

We also proved a new Marcinkiewicz-Zygmund type discretization result for the integral norms
of general exponential sums. For a given n ∈ N, δ,M > 0 let us introduce the following set of
n term exponential sums in Rd with exponents separated by δ and bounded by M

Ωd(n, δ,M) := {
∑

1≤j≤n

cje
⟨µj ,w⟩, cj ∈ R, µj,w ∈ Rd, |µj+1 − µj| ≥ δ, |µj| ≤ M}.

Theorem 7. Let 1 ≤ q < ∞, 0 < δ ≤ 1, n ∈ N,M > 1. Then we can explicitly give discrete sets
YN = {xj}Nj=1 ⊂ (a, b) of cardinality

N ≤ cqn ln
1
q
+1 M

δ

so that for each exponential sum g ∈ Ω1(n, δ,M) we have

∥g∥qLq [a,b] ∼
∑

1≤j≤N−1

(xj+1 − xj)|g(xj)|q, (11)

where all the constants involved are absolute.
The above upper bound for the cardinality of the discrete meshes turns out to be near optimal

in the sense that it is sharp with respect to dimension n up to the logarithmic term. The degree M
and separation parameter δ of the exponential sums appearing only in the logarithmic term has a
limited effect on the bound. In addition, the discrete set is universal in the sense that it depends
only on dimension n, degree M and separation parameter δ of the exponential sums.

The above discretization result admits a generalization to the unit cube Id := [0, 1]d in Rd.
Theorem 8. Let 1 ≤ q < ∞, d, n ∈ N, 0 < δ < 1,M > 1. Then there exist positive weights

a1, ..., aN and discrete point sets YN = {w1, ...,wN} ⊂ Id of cardinality

N ≤ c(d, q)nd ln
d
q
+d M

δ
,

so that for every exponential sum g ∈ Ωd(n, δ,M) we have

∥g∥q
Lq(Id)

∼
∑

1≤i≤N

ai|g(wi)|q, (12)

where all the constants involved depend only on d and q.
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Exceptional orthogonal polynomials. We computed asymptotics of the recurrence coeffi-
cients of X1-Jacobi polynomials and investigated the limit of the corresponding Christoffel functions.
The proofs of the related theorems with respect to standard orthogonal polynomials are based on
the three-term recurrence relation. The main new point in this respect is the fact that exceptional
orthogonal polynomials possess at least five-term recurrence formulae and so a Christoffel-Darboux
formula is not available in this case. These difficulties were successfully handled in a combinatorial
way. In addition, estimates for the Lebesgue constants, as well as error estimates of the approxi-
mation by barycentric interpolation operators were given. Some inherited properties of exceptional
Jacobi polynomials were derived and as an application it was shown that similarly to the stan-
dard case, the equilibrium measure of Julia sets of exceptional Jacobi polynomials tends to the
equilibrium measure of the interval of orthogonality in weak-star sense.

Weighted inequalities for the maximal operator with respect to the discrete diffusion semigroups
associated with exceptional Jacobi and Dunkl-Jacobi polynomials were given. This setup allows to
extend the corresponding results obtained for discrete heat semigroup to richer class of differential-
difference operators.

General translations and Bessel convolutions. We introduce general translations as so-
lutions to Cauchy or Dirichlet problems. This point of view allows us to handle for instance the
heat-diffusion semigroup as a translation. With the given examples, Kolmogorov–Riesz character-
ization of compact sets in certain Lp

µ spaces is derived.Pego-type characterization results are also
derived. Finally, in certain model cases the equivalence of the corresponding modulus of smoothness
and K-functional is pointed out.

We defined and examined nonlinear potential by Bessel convolution with Bessel kernel. We
investigated removable sets with respect to Laplace-Bessel equation.By studying the maximal and
fractional maximal measure, a Wolff type inequality was proved. Finally the relation of B − p
capacity and B-Lipschitz mapping, and the B − p capacity and weighted Hausdorff measure and
the B − p capacity of Cantor sets has been examined.
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