
Excited-state density functional theory

(Results of the OTKA project K123988)

Preliminaries, aims of the project

Density functional theory provides a huge simplification of the many–electron
problem as only the electron density needs to be employed instead of the wave func-
tion. Originally it was a ground-state theory [1]. The first rigorous generalization of
density functional theory for excited states was developed by Theophilou [2]. The
subspace theory of Theophilou was enlarged into the theory of unequally weighted
ensembles of excited states by Gross, Oliveira and Kohn [3]. However, the subspace
and ensemble theories are complicated by the requirement that a whole ensemble of
states has to be considered. Therefore, we proposed a theory for individual excited-
states [4, 5]. The Levy-Nagy constrained-search functional [4, 5] is still complicated
as not only the density of the given state but also the external potential ( or the
ground-state density) is needed. Therefore, the principal investigator proposed a
theory for Coulomb systems [6, 7]. This approach was generalized by Ayers, Levy
and Nagy [8] during the previous OTKA project K 100590.

We showed that the Coulomb density is special because it determines not only
its Hamiltonian but the degree of excitation as well. Unlike existing formulations,
additional functionals and indices are not required and the equations of excited-state
density functional theory strongly resemble those of the ground-state theory. For
practical computation the Kohn-Sham version of the theory was also derived [9].

The aims of the project were to extend the theory to degenerate states, to
explore the most important properties of the exchange-correlation functional, to
derive exact relations, theorems utilizing information-theoretical concepts.

The aims of the project have been achieved. 32 publications appeared. Several
conference lectures were presented.

Results

Ayers-Levy-Nagy theory

The first aim of the project was the extension of our recently introduced excited-state
theory to degenerate systems. To this end we identifined time-independent universal
functionals of ensemble densities for individual degenerate excited levels of Coulomb
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systems. We proved that the ensemble Coulomb densities determine not only the
Hamiltonian but the degree of excitation as well. We derived the Euler equation
depending on only the ensemble density of the given degenerate excited level. We
introduced the corresponding noninteracting system and derived the appropriate
system of Kohn-Sham equations [10].

Then, the Ayers-Levy-Nagy theory was reconsidered using the nodal varia-
tional principle. It is much easier to solve the Kohn-Sham equations, because only
the correct number of nodes of the orbitals should be insured instead of the orthog-
onality [11].

It is interesting to find out how these functionals behave under coordinate
scaling. Relations for the scaled exchange, correlation, exchange-correlation and ki-
netic functionals have been presented. The exact form of the exchange-correlation
functional is not known even for the ground state. Therefore, one needs approx-
imation to perform calculations. It turned out that exact relations are useful in
constructing approximate functionals for the ground state. It is supposed that this
statement is true for excited states as well. Via coordinate scaling one can constract
exact constraints that the excited-state functionals should satisfy. These relations
are expected to be advantageous for designing approximate forms of excited-state
functionals [12]. Later, other exact relations were also derived [13, 14].

The localized Hartree-Fock (LHF) and the Krieger, Li and Iafrate (KLI) meth-
ods were generalized for excited states and combined with a local Wigner-type cor-
relation. Illustrative examples were presented for some highly excited states of Li
and Na atoms [15].

We have applied density functional theory to investigate random Cu-Au alloys
and order-disorder transformation in Fe-Ni [16, 17].

Spherical density functional theory

In a recent paper Theophilou [18] proved that in molecules and solids, a set of spher-
ically symmetric densities determines uniquely the external potential. The principal
investigator presented an alternative derivation of Theophilou’s new theorem and
proved a more general version via constrained search. Euler equations and Kohn-
Sham equations have been derived for spherically symmetric densities [19].

Then, it was demonstrated that any of the spherically symmetric densities
obeys a Schrödinger-like differential equation which is equivalent to the Euler equa-
tion of this density. The exact effective potential was derived and its form was
explicitly given in terms of wave-function expectation values. The spherically sym-
metric densities reflect several properties of atoms and show some resemblance to
the “Atoms in Molecules”, though the two concepts are quite different [20].
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Later, the theory was extended to degenerate states. Euler equations and
Kohn-Sham equations were derived and a novel form of the virial theorem was pre-
sented. It was emphasized that degenerate states of atoms can be rigorously treated
as spherically symmetric when a subspace density is used with equal weighting fac-
tors [21].

In this spherical theory, a ’set-representability problem’ arises: does a density
exist for a given set of spherically symmetric densities? This representability problem
was solved using the potential instead of the density as basic variable. The spherical
subspace potential functional theory was established [22, 23, 24, 25].

Subsequently, this novel spherical theory was extended to individual excited
states. The generalization is based on the method developed in the series of papers
by Ayers, Levy and Nagy [8, 9, 10]. Generalized Hohenberg-Kohn theorems were
proved to the set of spherically symmetric densities using constrained search. A
universal variational functional for the sum of the kinetic and electron-electron re-
pulsion energies was constructed. The functional is appropriate for the ground state
and all bound excited states. Euler equations and Kohn-Sham equations for the
set were derived. The Euler equations can be rewritten as Schrödinger-like equa-
tions for the square root of the radial densities and the effective potentials in them
can be expressed in terms of wave-function expectation values. The Hartree plus
exchange-correlation potentials can be given by the difference of the interacting and
the non-interacting effective potentials. (The paper has just been submitted.)

Orbital-free density functional theory

Nowadays, the great majority of DFT calculations are done by solving the Kohn-
Sham equations. For a system with many particles there are a lot of Kohn-Sham
equations. Therefore, it is reasonable to go back to the original Euler equation [26].
A new orbital-free approach was presented. In this theory, need for the kinetic enegy
functional is avoided. Instead, a generating function is defined. It has two extra
variables compared to the density and it reduces to the density if these variables are
equal to zero. This new orbital-free theory is valid in case of zero and non-zero tem-
perature, as well [27]. This method can be used for spherically symmetric systems.
Combining this approach with spherical density functional theory mentioned above
a novel orbital-free theory was created [28].

Pair density functional theory

Nowadays, excited-state calculations are mainly done by the time-dependent density
functional theory (TDDFT). Generally, accurate results are obtained in a highly
efficient way. There are, however, cases, where the adiabatic approximation fails.
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A typical example is the double excitation. Therefore the principal investigator
generalized the TDDFT to the pair density. The Runge-Gross theorem was proved
for the pair density. A ’non-interacting scheme’ of electron pairs was constructed via
adiabatic connection and equations for the auxilary pair functions were presented
[29].

Then, the time-independent pair density functional theory was extended to ex-
cited states of Coulomb systems. It was shown that the pair density determines the
Hamiltonian of the Coulomb system. A universal kinetic energy functional appro-
priate for the ground and all bound excited states is defined. The Euler equation can
be rewritten as a two-particle auxiliary equation in which the unknown Pauli-like
potential should be approximated [30].

Information-theoretical concepts

Information-theoretic concepts have proved to be useful in density functional theory.
We extended these concepts to excited states. Euler equations were derived in
the orbital-free excited-state density functional theory of Coulomb systems for the
specific relative information. Derivation via variational extremization of the relative
Fisher information was also presented. We displayed the relationships between the
Fisher and Shannon information, the local wave-vector and the relative information
[32].

Ensembles of excited states were also studied. It was shown by Ghosh, Berkowitz
[33] and Parr that the ground-state density functional theory can be trancripted as
a local thermodynamics. Earlier we extended this formalism to ensembles of excited
states [34]. These theories, however, are not unique as one of their key quantities,
the kinetic energy density, can be defined in several ways. Usually the everywhere
positive gradient form is applied, but other forms are also acceptable, provided
they integrate to the true kinetic energy. Recently, a kinetic energy density of the
ground-state theory maximizing the information entropy has been proposed. Then,
an ensemble kinetic energy density leading to extremum information entropy were
derived via constrained search. The ensemble temperature is found to be constant
[35]. It was also shown that extremization of the Fisher information results a con-
stant temperature. For Coulomb systems there is a simple relation between the total
energy and phase-space Fisher information [36].

The phase-spase fidelity between excited states is proportional to the position-
space fidelity, with a factor of proportionality depending on total energies. The
phase-spase relative entropy is equal to the position-space relative entropy plus a
term depending only on the total energies. Relationship between phase-spase fidelity
susceptibility and Fisher information was also presented [37].

A review on the relationship of Fisher information and density functional the-
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ory was published[38].

Phase-space Rényi entropy and complexity were defined within the thermody-
namic picture of density functional theory. The structural entropy defined by Pipek,
Varga and Nagy, the LMC statistical complexity introduced by López-Ruiz, Mancini
and Calbet and the generalized complexity proposed by López-Ruiz, Nagy, Romera
and Sanudo were extended to the phase space. It was shown that in case of constant
local temperature the logarithm of the phase-space LMC complexity reduces to the
position-space structural entropy defined by Pipek et al. [39]

The phase-space relative Rényi entropy was introduced using the information
theoretical and thermodynamic view of density functional theory. In the special case
of constant inverse temperature the phase-space relative Rényi entropy is a sum of
the position-space relative Rényi entropy and a term arising from the momentum
space. This quantity can be considered as a measure of similarity. It includes more
information than the position-space measures, since it also incorporates momentum-
space knowledge [40].

Information theoretical concepts such as fidelity and phase-space Fisher in-
formation have also been studied as markers of topological phase transitions in 2D
Dirac materials [41, 42, 43].
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[34] Á. Nagy, Ind. J. Chem. A 53 965 (2014).
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[37] Á. Nagy, J. Chem. Phys. 153 154103 (2020).
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